Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Li-Jun Song, Jie Zhang,* Zi-Rong Tang, Wen-Guo Wang and Zhan-Feng Ju

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China

Correspondence e-mail: zhangjie@ms.fjirsm.ac.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.008 Å R factor = 0.054 wR factor = 0.127 Data-to-parameter ratio = 11.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Printed in Great Britain - all rights reserved

Hexaaquacobalt(II) (μ_2 -triethylenetetraminehexaacetato)diaquadicobalt(II) tetrahydrate

The title complex, $[Co(H_2O)_6][Co_2(TTHA)(H_2O)_2]\cdot 4H_2O$ (TTHAH₆ = triethylenetetraminehexaacetic acid), consists of discrete $[Co(H_2O)_6]^{2+}$ cations and $[Co_2(TTHA)(H_2O)_2]^{2-}$ binuclear anionic units. Each Co(II) ion in the binuclear units is coordinated by one water and half a TTHA⁶⁻ anion as a pentadentate ligand, giving a distorted octahedral arrangement. The $[Co(H_2O)_6]^{2+}$ cation lies on a center of inversion in the crystal and exhibits strong hydrogen-bond interactions with four carboxylate groups from the TTHA⁶⁻ ligand and the water molecules, leading to the formation of a threedimensional network.

Comment

Polyoxometalate magnetic clusters, as candidates for singlemolecule magnets (SMMs), have attracted considerable interest for their applications in magnetism and materials chemistry (Beattie *et al.*, 1998; Brechin *et al.*, 2002). TTHAH₆ (triethylenetetraminehexalacetic acid), as a multidentate ligand with ten potential coordinating sites, can play an important role in the self-assembly of magnetic molecules. In an effort to synthesize oligomeric Co–O cluster compounds by the hydrothermal reaction of Co(OH)₂, CF₃COOH and TTHAH₆ in water, a new polyoxometalate compound, $[Co(H_2O)_6][Co_2(TTHA)(H_2O)_2]\cdot4H_2O$, (I), was isolated. We report here its synthesis and crystal structure.

The crystal structure of (I) is composed of discrete $[Co(H_2O)_6]^{2+}$ cations and $[Co_2(TTHA)(H_2O)_2]^{2-}$ binuclear anionic units, as shown in Fig. 1. The $[Co(H_2O)_6]^{2+}$ cations exhibit a distorted octahedral arrangement in which the Co(II) atom is coordinated by six water O atoms. The Co–O bond lengths range from 2.044 (4) to 2.120 (4) Å. The binuclear anion $[Co_2(TTHA)(H_2O)_2]^{2-}$ is centrosymmetric with the midpoint of the ethylene C–C bond on an inversion center, the same arrangement as in $[Ni(H_2O)_6][Ni_2(TTHA)-(H_2O)_2]\cdot 4H_2O$ (Li *et al.*, 1999) and similar to that in $[Cr_2(TTHA)(H_2O)_2]\cdot 2H_2O$ (Fallon & Gatehouse, 1974). Each

`оп<u>.</u> с—с н,

(I)

• 4H₂O

Received 8 August 2003 Accepted 3 September 2003 Online 11 September 2003

Figure 1

ORTEP drawing of the title compound, showing 30% probability displacement ellipsoids. H atoms are omitted for clarity.

Figure 2

Packing diagram, viewed along the b axis, showing the hydrogen-bond interactions as dashed lines.

Co(II) ion in $[Co_2(TTHA)(H_2O)_2]^{2-}$ has a distorted octahedral geometry and is bonded to two N atoms and three carboxylate O atoms from half of the TTHA⁶⁻ ligand, as well as one water molecule. The Co1-N1 and Co1-N2 bond lengths are 2.148 (4) and 2.205 (4) Å, respectively, and the Co-O distances are in the range 2.054 (4)-2.102 (3) Å. There are hydrogen-bond interactions (average O···O distance 2.791 Å) between the O atoms of the four carboxylate groups from the TTHA⁶⁻ ligand and the water molecules, leading to a three-dimensional array, as shown in Fig. 2. The distances and angles around Co are listed in Table 1 and the hydrogen-bond interactions are given in Table 2.

Experimental

A mixture of Co(OH)₂ (0.186 g, 2 mmol), TTHAH₆ (0.202 g, 0.5 mmol), CF₃COOH (0.077 ml, 0.1 mol) and H₂O (10 ml) was sealed in a 25 ml stainless-steel reactor with a Teflon liner. The reaction system was heated at 443 K for 72 h. After slow cooling to room temperature, purple crystals were collected by filtration.

Crystal data

[Co(H₂O)₆]-Z = 1[Co₂(C₁₈H₂₈N₄O₁₄)]·4H₂O $D_x = 1.695 \text{ Mg m}^{-3}$ $M_r = 881.39$ Mo $K\alpha$ radiation Triclinic, $P\overline{1}$ Cell parameters from 1425 a = 7.3671(2) Å reflections b = 8.6295 (4) Å $\theta=1.4{-}25.0^\circ$ $\mu = 1.52 \text{ mm}^{-1}$ c = 15.0272(7) Å $\alpha = 73.543 \ (2)^{\circ}$ T = 293 (2) K $\beta = 83.409 \ (3)^{\circ}$ Rectangular parallelepiped, purple $\gamma = 70.465(2)^{\circ}$ $0.52 \times 0.20 \times 0.10 \text{ mm}$ V = 863.26 (6) Å³

> 3009 independent reflections 2629 reflections with $I > 2\sigma(I)$

 $w = 1/[\sigma^2(F_o^2) + (0.0278P)^2]$

 $R_{\rm int}=0.025$

 $\theta_{\rm max} = 25.1^\circ$

 $h = -8 \rightarrow 8$

 $k=-8\rightarrow 10$

 $l = -17 \rightarrow 17$

+ 5.0398*P*] where $P = (F_o^2 + 2F_c^2)/3$

 $\begin{array}{l} (\Delta/\sigma)_{\rm max} = 0.003 \\ \Delta\rho_{\rm max} = 0.53 \ {\rm e} \ {\rm \AA}^{-3} \end{array}$

 $\Delta \rho_{\rm min} = -0.35 \ {\rm e} \ {\rm \AA}^{-3}$

Data collection

Bruker SMART CCD diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.609, T_{\max} = 0.859$ 4522 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.127$ S = 1.06 3009 reflections 259 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected geometric parameters (Å, °).

Co2-O9	2.044 (4)	Co1-O4	2.062 (4)
Co2-O10	2.097 (4)	Co1-O6	2.102 (3)
Co2-O8	2.120 (4)	Co1-N1	2.148 (4)
Co1-O2	2.054 (4)	Co1-N2	2.205 (4)
Co1-O7	2.062 (4)	C9–C9 ⁱ	1.526 (9)
O9-Co2-O10	90.84 (18)	O2-Co1-N2	156.56 (16)
O9-Co2-O8	91.8 (2)	O7-Co1-N2	101.78 (17)
O10-Co2-O8	98.25 (16)	O4-Co1-N2	96.53 (15)
O2-Co1-O7	95.27 (17)	O6-Co1-N2	78.88 (14)
O2-Co1-O4	98.33 (16)	N1-Co1-N2	84.07 (16)
O7-Co1-O4	93.62 (16)	C4-O4-Co1	115.8 (3)
O2-Co1-O6	86.14 (14)	C1-N1-Co1	105.4 (3)
O7-Co1-O6	87.02 (16)	C3-N1-Co1	107.7 (3)
O4-Co1-O6	175.40 (15)	C7-N1-Co1	105.2 (3)
O2-Co1-N1	80.23 (16)	C2-O2-Co1	116.0 (3)
O7-Co1-N1	173.02 (18)	C5-N2-Co1	109.1 (3)
O4-Co1-N1	81.83 (16)	C9-N2-Co1	109.0 (3)
O6-Co1-N1	97.93 (16)	C8-N2-Co1	103.6 (3)

Symmetry code: (i) 2 - x, 3 - y, 2 - z.

Table 2		
Hydrogen-bonding geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O9−H9C···O1 ⁱⁱ	0.84 (6)	1.89(7)	2.717 (6)	172 (6)
O8−H8C···O2 ⁱⁱ	0.90(2)	2.06(2)	2.953 (6)	172 (5)
$O12-H12A\cdots O3^{iii}$	0.85 (6)	2.05 (6)	2.895 (8)	174 (6)
$O11-H11A\cdots O1^{iii}$	0.77 (6)	1.92 (7)	2.682 (6)	169 (7)
$O10-H10B\cdots O6^{iv}$	0.77 (6)	2.02 (6)	2.783 (5)	170 (6)
$O9-H9D\cdots O11^{iv}$	0.85 (6)	1.87 (7)	2.714 (6)	175 (6)

Symmetry codes: (ii) 1 + x, y, z; (iii) 1 + x, y - 1, z; (iv) 2 - x, 3 - y, 1 - z.

H atoms bonded to C atoms were positioned geometrically (C–H 0.97 Å). The U values of the H atoms were set to $1.2(U_{eq})$ of the parent atom. Water H atoms were located in a difference map and their positions refined. Three O–H distances were restrained [O12–H12B 0.85 (2), O8–H8C 0.92 (2), O10–H10A 0.82 (2)]. O–H bond lengths are in the range 0.76 to 0.90 Å.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SMART*; data reduction: *SAINT* (Siemens, 1996) and *XPREP* in *SHELXTL* (Bruker, 1997); program(s) used to solve structure: *XS* in

SHELXTL; program(s) used to refine structure: *XL* in *SHELXTL*; molecular graphics: *XP* in *SHELXTL*; software used to prepare material for publication: *XL* in *SHELXTL*.

The authors acknowledge financial support of the Natural Science Foundation of China (No.20201010), the Natural Science Foundation of Fujian Province of China (No.E0220003/E0310030), the Ministry of Education, and the Ministry of Personnel of China.

References

Beattie, J. K., Hambley, T. W., Klepetko, J. A., Masters, A. F. & Turner, P. (1998). Chem. Commun. pp. 45–46.

Brechin, E. K., Cardor, O., Caneschi, A., Cadiou, C., Harris, S. G., Parsons, S., Vonci, M. & Winpenny, R. E. P. (2002). *Chem. Commun.* pp. 1860–1861.

Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Fallon, G. D. & Gatehouse, B. M. (1974). Acta Cryst. B30, 1987–1992.

Li, D. F., Liao, Z. R., Xiong, Y. (1999). Acta Cryst. C55, IUCr9900058.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc. Madison, Wisconsin, USA.